
1a private static int numberofLeapYears(int year1, int year2){
 int counter = 0;
 for(int i = year1; i<=year2; i++){
 if(isLeapYear(i)) counter++;}
 return counter;
}

1b public static int dayOfWeek(int month, int day, int year) {
 return (firstDayOfYear(year)+dayofYear(month, day, year)-1)%7;
}

Rubric 1a
+1 Creates an int counter variable to track results of leap years
+1 Creates a for loop without out of bounds exception that includes year1 and year 2
+1 Correctly calls isLeapYear function
+1 Correctly increments counter if a year is a Leap Year
+1 Returns correct count of number of Leap Years between year1 and year2
Rubric 1b
+1 Correctly calls firstDayOfYear function
+1 Correctly calls dayofYear function
+1 Calculates the correct day of the week using %7
+1 Returns correct dayofWeek int

2 public class StepTracker{
 private int minSteps;
 private ArrayList<Double> activeSteps = new ArrayList<Double>();

 public StepTracer(int minSteps){
 this.minSteps = minSteps;}

 public void addDailySteps(int steps){
 activeSteps.add(steps);}

 public int activeDays(){
 int counter = 0;
 for(Double a: activeSteps){
 if(a>=minSteps) counter++;}
 return counter;}

 public double averageSteps(){
 double average = 0.0;
 if(activeSteps.size()==0) return average;
 for(Double a: activeSteps){
 average+=a;}
 return average/activeSteps.size();}
}
**There were many ways to do this without creating an ArrayList!

Rubric 2
+1 Correctly creates instance variables that are set to private (could do 4 variables to track – int

minimumSteps, int ActiveDays, int TotalDays, double stepCount) or what I’ve shown in my
solution.

+1 Creates a constructor that has the correct parameter of an int that it correctly sets the
minimumSteps instance variable.

+1 public void addDailySteps(int steps) is the method name.
+1 addDailySteps correctly increments the TotalDays, stepCount correctly
+1 public int activeDays() declared correctly
+1 public int activeDays() returns the correct count of active days

*it’s likely increasing your active days is in addDailySteps, which is needed for this point!
+1 public double averageSteps() declared correctly
+1 averageSteps does not attempt to divide by 0 and returns a 0.0 in the event that no steps were

recorded
+1 public double averageSteps() returns the correct double value that represents the average steps

(all steps added together divided by total days)

3a public ArrayList<String> getDelimitersList(String[] tokens)
{
 ArrayList<String> delimiters = new ArrayList<>();
 for(String a: tokens)
 if(a.equals(openDel) || a.equals(closeDel))
 delimiters.add(a);
 return delimiters;
}

3b public static boolean isBalanced(ArrayList<String> delimiters)
{
 int open = 0;
 int close = 0;

 for(String a: delimiters){
 if(a.equals(openDel)) open++;
 else if(a.equals(closeDel)) close++;

 if(close>open) return false;
 }

 return open==close;
}

Rubric 3a
+1 Instantiate an arraylist of Strings correctly
+1 Create a for loop that goes through every entry in the array tokens without out of bounds

exception
+1 Correctly tests if the item in the tokens array is an open or closed delimiter
+1 Returns an arraylist with ONLY the correct delimiters in it
Rubric 3b
+1 Creates a for loop that correctly goes through all items in the delimiters arraylist with no out of

bounds exceptions
+1 Correctly increments conditions that add 1 to variables counting the closed and open delimiters
+1 Correctly checks if closed<open inside for loop and returns false if so
+1 Correctly checks if closed and open values are equal after loop is executed
+1 Returns correct true/false value without error

4a public LightBoard(int numRows, int numCols){
 lights = new boolean[numCols][numRows];
 for(int i = 0; i<numRows; i++){
 for(int j=0; i<numCols; j++){
 if(Math.random()<0.4) lights[i][j] = true;
 }}
}

*note I didn’t put a condition for lights[i][j]=false because the array
will default to those values, but it is not wrong if you did

4b
public boolean evaluateLight(int row, int col) {
 boolean a = lights[row][col];
 int count = 0;

 for(int i = 0; i<lights.length;i++){
 if(lights[i][col]) count++;}

if(a && count%2==0) return false;
else if(!a && count%3==0) return true;

return a;
}

Rubric 4a
+1 Instantiates the lights array with correct row and columns
+1 Creates loops that correctly go through all items in the 2D array without out of bounds exception
+1 Creates a random number generator correctly that can be used to represent the simulation

correctly in the loop (so it will generate each increment of the loop)
+1 Correctly assigns true or false to each item in the 2D arrayList
Rubric 4b
+1 Creates for loop to go through contents of the column specified in the parameters
+1 Correctly adds the number of lights on in the column
+1 Returns false if the light in the row&&column is on and the column count of lights on is even
+1 Returns true if the light in the row&&column is off and the column count is divisible by 3
+1 Returns the correct true/false condition in all cases (if none of the above conditions are met,

returns if light at row&&column is on or off)

